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Quantum group invariant supersymmetric t–J model with
periodic boundary conditions
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Instituto de F́ısica da Universidade Federal do Rio Grande do Sul, Av. Bento Gon¸calves 9500,
91.501-970 Porto Alegre, RS, Brazil

Received 24 May 1996, in final form 5 September 1996

Abstract. An integrable version of the supersymmetrict–J model which is quantum group
invariant as well as periodic is introduced and analysed in detail. The model is solved through
the algebraic nested Bethe ansatz method.

The Bethe ansatz method [1], first introduced to solve theXXX Heisenberg chain, is one
of the most powerful tools in the treatment of integrable models. Its further development
had important contributions from Yang and Yang [2] and Baxter [3], among others (for
a review, see De Vega [4]). A great impetus in the theory of integrable systems was
given by the quantum inverse scattering method [5]. This approach provides a unified
framework for the exact solutions of classical and quantum models and led naturally to
the new mathematical concept of quantum groups [6]. The construction of quantum group
invariant integrable models has been attracting considerable attention. One possible way of
obtaining such invariant models is to deal with open boundary conditions (OBC). In this
connection, some quantum group invariant integrable models, such as theXXZ-Heisenberg
model [7, 8], thesplq(2, 1) supersymmetrict–J model [9, 10], theSUq(N) [11], the
SUq(n/m) [12, 13] and theB(1)

n , C(1)
n andD(1)

n spin chains [14] have been formulated. In
particular, (with the exception of theB(1)

n , C(1)
n and D(1)

n cases) their spectrum have been
obtained through a generalization of the Sklyanin–Cherednik construction of the Yang–
Baxter algebra [15, 16]. For these cases, the use of OBC resulted in the calculations
becoming much more complex than for periodic boundary conditions (PBC). For instance,
the commutation relations between the pseudoparticle operatorsBα and the transfer matrix
are much more involved. In addition, the structure of the unwanted terms generated in
the procedure is so complicated that only after sophisticated manipulations is it possible to
recognize wanted and unwanted contributions. For theB(1)

n , C(1)
n and D(1)

n chains, due to
technical difficulties, a ‘doubled’ postulate has been proposed to obtain the spectrum.

Recently, the question as to whether quantum group invariance necessarily implies the
use of OBC has been addressed in the literature. The construction of quantum group
invariant integrable closed chains has been examined by some authors [17–19] and, in fact,
a quantum group invariantXXZ model and anUq(sl(n)) invariant chain with PBC have
been formulated and analysed in detail. Therefore, it is of interest to find other quantum
group invariant integrable closed chains.

† E-mail address: angela@if.ufrgs.br
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In this paper we introduce an integrable version of the supersymmetrict–J model
which is quantum group invariant and periodic. The system is of interest because of its
possible connection with high-Tc superconductivity. It describes electrons with nearest-
neighbour hopping and spin exchange interaction on a chain (see equation (18)) and can
be considered as an anisotropic extension of the supersymmetrict–J model. Its physical
properties are, of course, essentially the same as for the case of OBC. Nevertheless, the
approach adopted here drastically simplifies the nested Bethe ansatz. Moreover, this is the
first time that a quantum supergroup invariant integrable periodic model has been presented.
The corresponding Hamiltonian is related to a transfer matrix of a ‘graded’ vertex model
[20] with anisotropy. The system is analysed through a generalization of the construction of
[18] to the case of a ‘graded’ 15-vertex model and the Bethe ansatz equations are obtained.

We begin by introducing theR-matrix, which in terms of a generic spectral parameter
x and a deformation parameterq reads [21]

R
γδ

αβ(x) =
x

β
1

α

γ δ

@
@
@I

�
�
��

�
�
�@
@
@

=



a 0 0 0 0 0 0 0 0
0 b 0 c− 0 0 0 0 0
0 0 b 0 0 0 c− 0 0
0 c+ 0 b 0 0 0 0 0
0 0 0 0 a 0 0 0 0
0 0 0 0 0 b 0 c− 0
0 0 c+ 0 0 0 b 0 0
0 0 0 0 0 c+ 0 b 0
0 0 0 0 0 0 0 0 w


(1)

whereα, β (γ , δ) are column (row) indices running from 1 to 3 and

a = xq − 1

xq
b = x − 1

x
c+ = x

(
q − 1

q

)
c− = 1

x

(
q − 1

q

)
w = −x

q
+ q

x
.

(2)

The subscriptsx and 1 in the diagram in equation (1) will soon become clear. TheR-
matrix (1) acts in the tensor product of two three-dimensional auxiliary spacesC3 ⊗C3 and
it fulfills the Yang–Baxter equation

R
α′′β ′′
α′β ′ (x/y)R

α′γ ′′
α γ ′(x)R

β ′γ ′
β γ (y) = R

β ′′γ ′′
β ′γ ′ (y)R

α′′γ ′
α′ γ (x)R

α′β ′
α β (x/y). (3)

It is easy to check that it also satisfies the Cherdnik’s reflection property [15]

R
α β

α′β ′ (x/y)R
β ′α′
γ δ

(
µ

xy

)
= R

α β

α′β ′

(
µ

xy

)
R

β ′α′
γ δ (x/y)

A
A
A

PPPPP

x

µ/x

y

µ/y= A
A
A
A
A
A

PPPPP
y

x

µ/y

µ/x
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���1

δδ

γ

γ

αα

β

β

a

a

a

a

�
�
��

.

(4)

Here the symbol (◦) indicates that at this point the spectral parameter changes fromx to
µ/x and y to µ/y. Note the presence of an arbitrary constantµ in the above equation,
which is related with the choice of the boundaries. As in the case of theUq(sl(n)) invariant
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integrable chain [18], we will take the limitµ → ∞ in order to construct a quantum group
invariant model with PBC.

For later convenience the spectral parameter dependentR-matrix (1) can be written in
terms of ‘constant’R-matrices (R±) as

R(x) = xR+ − 1

x
R− = x

@
@
@I ���

��
− 1

x �
�
��@@I

@@
(5)

where R+ (R−) corresponds to the leading term in the limit of the matrixR(x) for
x → ∞(0).

As usual, the standard monodromy matrix is defined as the product ofR-matrices (1)
as follows:

T
γ {δ}
α{β} (x) = R

γ δ1
α1β1

(1/x)R
α1δ2
α2β2

(1/x) · · ·RαL−1δL

α βL
(1/x) = · · ·

β1 β2 βL

1 1 1

δ1 δ2 δL

� αxγ

6 6 6

. (6)

It acts in the tensor product of aL-dimensional ‘quantum space’ and a three-dimensional
auxiliary space (C3L × C3). For the caseq = 1, taking the trace of theT -matrix (6)
in the auxiliary space one gets anspl(2, 1) invariant transfer matrix, related with the
supersymmetrict–J model [22]. However, forq 6= 1, this trace does not generate an
splq(2, 1) invariant transfer matrix. Then, in order to construct a quantum group invariant
integrable model we have to introduce the ‘doubled’ monodromy matrixU :

Uγ {δ}
α{β}(x, {µ}) = T̃

γ {δ}
α′{β ′}(µ/x) T

α′{β ′}
α{β} (x) =

· · ·

β1 β2 βL

δ1 δ2 δL

α

�
�

666 -· · · γµ/x

x

a
(7)

whereT̃ is a row-to-row monodromy matrix proportional toT −1:

T̃
γ {δ}
α{β} (x) = R

δ1α1
β1 α (x)R

δ2α2
β2α1

(x) · · ·RδL γ

βL αL−1
(x) = -· · ·

β1 β2 βL

1 1 1

x

δ1 δ2 δL

γα

6 6 6

(8)

and then take the appropriate trace in the auxiliary space. The arbitrary constantµ in
(7) can be used to select the boundary conditions. Choosingµ = 1, one obtains the
splq(2, 1) invariant supersymmetrict–J model with open boundary conditions (OBC),
already discussed in [9, 10]. Other quantum group invariant integrable models, such as
the XXZ model [7, 8], theSUq(N) [11] and SUq(n/m) [12, 13] chains have also been
considered in connection with OBC.

In what follows, we consider the limitµ → ∞. In this limit the contributions from
T̃ to the monodromy matrixU and consequently to the transfer matrix (see equation (11))
reduce to a product of constantR-matrices (R+) (see equation (5)). We will prove that this
choice yields a quantum group invariant supersymmetrict–J model with PBC.
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The ‘doubled’ monodromy matrixU (7) can be represented as a 3× 3 matrix whose
entries are matrices acting on the ‘quantum space’

Uγ
α (x) =

 A(x) B2(x) B3(x)

C2(x) D2
2(x) D2

3(x)

C3(x) D3
2(x) D3

3(x)

 . (9)

Using equations (3) and (4) (already in the limitµ → ∞) we can prove that it fulfills the
following Yang–Baxter relation:

R
α β

α′β ′ (y/x)Uβ ′
γ ′ (x)R+

γ ′α′
γ δ′ U δ′

δ (y) = Uα
α′(y)R+

α′ β

δ′β ′ Uβ ′
γ ′ (x)R

γ ′δ′
γ δ (y/x). (10)

We observe in the above equation the presence of constantR-matrices (R+) instead of
spectral parameter dependentR-matrices, which appear in the corresponding relation using
OBC [9, 10]. This will simplify the algebraic nested Bethe ansatz considerably.

Finally, the transfer matrix is defined as the Markov trace associated with the
superalgebrasplq(2, 1) (Kα

α ) of the ‘doubled’ monodromy matrix in the auxiliary space:

T {δ}
{β} (x) =

∑
α

Kα
α Uα{δ}

α{β} =
· · ·

β1 β2 βL

δ1 δ2 δL

�
�

666 -· · ·µ/x

x

a 	
�

��

��

a
�

(11)

where

Kα
α = σα q

(
−2

∑α−1
γ σγ

)
−σα+1 (12)

and

σ =
( 1 0 0

0 1 0
0 0 −1

)
. (13)

The Yang–Baxter equation for the ‘doubled’ monodromy matrixU (10) implies that
the transfer matrix (11) commutes for different spectral parameters, which proves the
integrability of the model. Then, from the above defined transfer matrix and the following
properties:

R
α′′β ′′

±α′β ′ R
β ′α′

∓βα = δα′′
α δ

β ′′
β

�� =

�
�
�@@

��@
@
@

@@

I �
α′′ β′′

α β
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@
@
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@@
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@@

�I 66
α′′ β′′

α β

α′′ β′′

α β

(14)

R αα′
±α′β Kα′

α′ = q±1δα
β
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β

α

β

α
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= q 6
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β

α

β

α

@@
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�
= q−1 6

(15)

we obtain a quantum group invariant one-dimensional supersymmetrict–J model with PBC
through

H ∝ ∂

∂x
ln(T )|x=1 . (16)
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This yields

H =
L−1∑
j=1

hj + h0 (17)

where

hj = −
∑

σ

(c
†
j,σ cj+1,σ + c

†
j+1,σ cj,σ ) − cosγ nj + 2 cosγ

−2
[
Sx
j Sx

j+1 + S
y

j S
y

j+1 + cosγ
(
Sz
j Sz

j+1 − njnj+1

4

)]
+i sin(γ )(nj − nj+1) − i sin(γ )(njS

z
j+1 − Sz

j nj+1) (18)

andh0 is a boundary term given by

h0 = R̂−
1 R̂−

2 · · · R̂−
L−1︸ ︷︷ ︸

G

hL−1 R̂+
L−1 · · · R̂+

2 R̂+
1︸ ︷︷ ︸

G−1

(19)

with

R̂
± {γ }
j {β} = 11γ1

β1
⊗ 11γ2

β2
⊗ · · ·R± γj γj+1

βj+1βj
⊗ · · · 11γL

βL
j = 1, 2, . . . , L − 1. (20)

The presence of this boundary term(h0) is essential for the construction of a quantum group
invariant model with PBC. Note that it emerges naturally from the present construction.
The other possible way of obtaining a quantum group invariant Hamiltonian (h0 = 0, which
corresponds to OBC), was already discussed in [9, 10]. In equation (18)L is the number of
sites of the quantum chain, thec(†)

j± are spin-up or -down annihilation (creation) operators,
the Sj are spin matrices and thenj are occupation numbers of electrons at lattice sitej .
The operatorsH , hi and R̂±

i (i = 1, 2, . . . , L − 1) act on the ‘quantum space’C3L (for
simplicity, we omit the quantum space indices and write them only whenever necessary).

It was shown in [18] using methods of topological quantum field theory that the transfer
matrix obtained by this approach for anUq(sl(n)) invariant chain is equivalent to the
partition function of a vertex model on a torus and the periodicity of that model is evident
from this. However, here it is not obvious that the Hamiltonian (17) describes a model
with PBC. To prove this fact we first note that the operatorsR̂± are a representation of the
Hecke algebra [23]†

R̂±
j R̂±

j = ±(q − 1/q)R̂±
j + 11

R̂±
j R̂±

j±1R̂
±
j = R̂±

j±1R̂
±
j R̂±

j±1

R̂±
i R̂±

j = R̂±
j R̂±

i |i − j | > 2.

(21)

From the Hecke algebra conditions (21) and the following relation:

hj = −R̂±
j + q±111 j = 1, 2, . . . , L − 1 (22)

we find that the operatorG−1 mapshj into hj−1

G−1hjG = hj−1 j = 2, . . . , L − 1 (23)

andh1 into h0

G−1h1G = GhL−1G
−1. (24)

† To obtain relations (21), the Yang–Baxter algebra (3) and equation (20) have been used.
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Then, denoting the Hamiltonian of equation (17) byH1,2,...,L and that obtained by
cyclic permutation(1, 2, . . . , L) → (L, 1, 2, . . . , L − 1) by HL,1,2,...,L−1, and using the
properties (23), (24), we show that

HL,1,2,...,L−1 = G−1H1,2,...,LG (25)

i.e. both Hamiltonians are physically equivalent, which completes the proof that we are
dealing with a periodic chain.

Note that, although the boundary term (19) is apparently non-local, it is local in the
sense that it commutes with the local observables, in particular, the generators of the Hecke
algebra [24]

[h0 , R̂±
j ] = 0 1 < j < L − 1. (26)

This can be verified by using equations (21) and (22). Finally, the quantum group
invariance of the Hamiltonian (17) follows directly from the fact that the operatorsR̂±

are a representation of the Hecke algebra.
Next we solve the eigenvalue problem of the transfer matrix

T 9 = (A + q−2D2
2 − q−2D3

3)9 = 39 (27)

(and consequently that of the Hamiltonian (17)) through the algebraic nested Bethe ansatz
(ANBA) with two levels. According to the first-level Bethe ansatz, the vector9 can be
written as

9 =
3∑

{α}=2

Bα1(x1)Bα2(x2) · · ·Bαr
(xr)9

{α}
(1) 8. (28)

The coefficients9(1) are determined later by the second-level Bethe ansatz while8 is the
reference state defined by the equation

Cα8 = 0 for α = 2, 3

whose solution is8 = ⊗L
i=1|1〉i . It is an eigenstate ofA andDα

β :

A(x)8 = qL a(1/x)L8 (29)

Dα
β(x)8 = δα

βb(1/x)L8. (30)

Following the general strategy of the algebraic nested Bethe ansatz we apply the transfer
matrix (11) to the eigenvector9 (28). Using the following commutation rules derived from
the Yang–Baxter relations (10):

A(x)Bα(y) = 1

q

a(x/y)

b(x/y)
Bα(y)A(x) − 1

q

c−(x/y)

b(x/y)
Bα(x)A(y)

−q − 1/q

q

3∑
β=2

Bβ(x)Dβ
α (y) (31)

Dγ

β (x)Bα(y) = R+
α′γ
γ ′δ′

R
β ′γ ′
β α (y/x)

b(y/x)
Bα′(y)Dδ′

β ′(x) − R+
α′γ
ββ ′

c−(y/x)

b(y/x)
Bα′(x)Dβ ′

α (x) (32)

we commuteA andD with all B’s and apply them to the reference state8. All indices in
equations (31) and (32) assume only the values 2, 3. We begin by considering the action
of A on 9. Using equation (31), two types of terms arise whenA passes throughBα.
In the first A and Bα preserve their arguments, and in the second their arguments are
exchanged. The first kind of terms are called ‘wanted terms’, since they can originate a
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vector proportional to9; this cannot happen to the second type and therefore they are called
the ‘unwanted terms’ (UT). Note that in the present formulation (µ → ∞) the decomposition
into wanted and unwanted terms appears naturally, as in the usual periodic case (where the
transfer matrix, which is not quantum group invariant, is constructed by taking the trace
of the standard row-to-row monodromy matrix). This is in contrast to the case of OBC
(µ = 1), where it is necessary to redefine theD-operators in order to recognize wanted and
unwanted contributions [9, 10]. After successive applications of (31), together with (29),
we obtain

A(x)9 = qL−ra(1/x)L
r∏

i=1

a(x/xi)

b(x/xi)
9 + UT. (33)

Correspondingly from the commutation relations betweenD andB, (32) and the action of
D on the reference state8 (30), we obtain wanted and unwanted contributions:

q−2(D2
2 − D3

3)9 = b(1/x)L
r∏

i=1

1

b(xi/x)

3∑
{α′}=2

Bα′
1
(x1)Bα′

2
(x2) · · ·Bα′

r
(xr )q

−1T {α′}
(1) 9(1) + UT.

(34)

Here we have introduced a new (second-level) transfer matrix

T(1) =
3∑

α=2

σα q−1 U(1)
α
α (35)

as the Markov trace associated with the superalgebraSUq(1, 1) of the second level ‘doubled’
monodromy matrixU(1), defined analogously toU (see equation (9)). Now, all indices range
from 2 to 3, as in the internal block of the matrixU (9). Thus, we will treat the internal
block D in the same way as we have done with the whole matrix, through the identification
A(1) ≡ U(1)

2
2, B(1) ≡ U(1)

2
3, C(1) ≡ U(1)

3
2 andD(1) ≡ U(1)

3
3, The first term (wanted term) on

the right-hand side of (34) is proportional to9 if the eigenvalue equation

T(1)9(1) = 3(1)9(1) (36)

is satisfied. The eigenvector9(1) of T(1) is defined by the second-level Bethe ansatz

9(1) = B(1)(y1)B(1)(y2) · · ·B(1)(ym)8(1) (37)

where 8(1) is the second level reference state given by8(1) = ⊗r
i=1|2〉i , as a result of

being annihilated byC(1). Then, proceeding along the same lines as in the previous step, we
apply T(1), equation (35), to the state9(1), equation (37), and passA(1) and D(1) through
theB(1)’s, using commutation relations derived from the Yang–Baxter relation (10) and the
action of A(1) and D(1) on the vacuum8(1). As before, we obtain wanted and unwanted
contributions:

A(1)(x)9(1) = q−m+r
r∏

i=1

a(xi/x)

m∏
j=1

a(x/yj )

b(x/yj )
9(1) + UT (38)

D(1)(x)9(1) = (−1)mq−m
r∏

i=1

b(xi/x)

m∏
j=1

w(yj/x)

b(yj/x)
9(1) + UT. (39)

Then, combining equations (38), (39), (34), (33) and (27) we get the eigenvalue3(x) of
the transfer matrixT if the ‘ unwanted terms’ cancel out:

3(x) = qL−ra(1/x)L
r∏

i=1

a(x/xi)

b(x/xi)
+ q−2+r−mb(1/x)L

r∏
i=1

a(xi/x)

b(xi/x)

m∏
j=1

a(x/yj )

b(x/yj )
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−(−1)mq−2−mb(1/x)L
m∏

j=1

w(yj/x)

b(yj/x)
. (40)

All unwanted terms vanish if the Bethe ansatz equations hold. They can be obtained by
demanding that the eigenvalue3(x) (40) has no poles atx = xi andx = yj , sinceT is an
analytic function inx

qL+m+2−2r

(
a(1/xk)

b(1/xk)

)L r∏
i=1

a(xk/xi)

b(xk/xi)

b(xi/xk)

a(xi/xk)

m∏
j=1

b(xk/yj )

a(xk/yj )
= −1 k = 1, . . . r (41)

(−1)mqr
r∏

i=1

a(xi/yl)

b(xi/yl)

m∏
j=1

a(yl/yj )

b(yl/yj )

b(yj/yl)

w(yj/yl)
= 1 l = 1, . . . m. (42)

Therefore, we have reduced the eigenvalue problem of the transfer matrixT to a system
of coupled algebraic equations in the parametersx and y. Note that these equations are
much simpler than those obtained for OBC (see [9, 10]). A possible application of these
results (equations (41), (42)) would be an analysis of the structure of the ground state
and some low lying excitations of the model in the thermodynamic limit. The question
of the completeness of the Bethe states for ansplq(2, 1) invariant supersymmetrict–J

model is left open. In [22], this point was treated for the isotropic case (q = 1), where a
complete set of eigenvectors was obtained by combining the Bethe ansatz with thespl(2, 1)

underlying supersymmetry of the model. The completeness of itsq-deformed version is
under investigation.
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