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Abstract. An integrable version of the supersymmettidd model which is quantum group
invariant as well as periodic is introduced and analysed in detail. The model is solved through
the algebraic nested Bethe ansatz method.

The Bethe ansatz method [1], first introduced to solve XX Heisenberg chain, is one
of the most powerful tools in the treatment of integrable models. Its further development
had important contributions from Yang and Yang [2] and Baxter [3], among others (for
a review, see De Vega [4]). A great impetus in the theory of integrable systems was
given by the quantum inverse scattering method [5]. This approach provides a unified
framework for the exact solutions of classical and quantum models and led naturally to
the new mathematical concept of quantum groups [6]. The construction of quantum group
invariant integrable models has been attracting considerable attention. One possible way of
obtaining such invariant models is to deal with open boundary conditions (OBC). In this
connection, some quantum group invariant integrable models, such AsxtAeHeisenberg
model [7, 8], thespl,(2,1) supersymmetric—J/ model [9, 10], theSU,(N) [11], the
SU,(n/m) [12, 13] and theBY, CP and DY spin chains [14] have been formulated. In
particular, (with the exception of th8Y, CY and DV cases) their spectrum have been
obtained through a generalization of the Sklyanin—Cherednik construction of the Yang—
Baxter algebra [15, 16]. For these cases, the use of OBC resulted in the calculations
becoming much more complex than for periodic boundary conditions (PBC). For instance,
the commutation relations between the pseudoparticle operdjoasid the transfer matrix
are much more involved. In addition, the structure of the unwanted terms generated in
the procedure is so complicated that only after sophisticated manipulations is it possible to
recognize wanted and unwanted contributions. Foraffe, C(Y and DV chains, due to
technical difficulties, a ‘doubled’ postulate has been proposed to obtain the spectrum.
Recently, the question as to whether quantum group invariance necessarily implies the
use of OBC has been addressed in the literature. The construction of quantum group
invariant integrable closed chains has been examined by some authors [17-19] and, in fact,
a quantum group invariarX XZ model and anU, (si(n)) invariant chain with PBC have
been formulated and analysed in detail. Therefore, it is of interest to find other quantum
group invariant integrable closed chains.

1 E-mail address: angela@if.ufrgs.br
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In this paper we introduce an integrable version of the supersymnretficmodel
which is quantum group invariant and periodic. The system is of interest because of its
possible connection with higi: superconductivity. It describes electrons with nearest-
neighbour hopping and spin exchange interaction on a chain (see equation (18)) and can
be considered as an anisotropic extension of the supersymmefrimodel. Its physical
properties are, of course, essentially the same as for the case of OBC. Nevertheless, the
approach adopted here drastically simplifies the nested Bethe ansatz. Moreover, this is the
first time that a quantum supergroup invariant integrable periodic model has been presented.
The corresponding Hamiltonian is related to a transfer matrix of a ‘graded’ vertex model
[20] with anisotropy. The system is analysed through a generalization of the construction of
[18] to the case of a ‘graded’ 15-vertex model and the Bethe ansatz equations are obtained.

We begin by introducing th&-matrix, which in terms of a generic spectral parameter
x and a deformation parametgrreads [21]

a 0 O|O0O O OO0 O O
0 b O|c O 0|0 O O
y s 0 0 »|0 O Ofc. O O
O ¢cg O|H O O]O0O O O
RIS (x) = >< =l 0 0 0/0 a«a 0O/0 0 O (1)
x 1 0 0 0|0 O |0 ¢ O
g 0 0 ¢c.| 0 O O|b O O
0 0 0|0 O c¢ct|O b O
0 0 0/0O O O|O0O O w
wheree, B (y, §) are column (row) indices running from 1 to 3 and
1 1 < 1)
a=xq—— b=x—— cr=x|q——
xq q
@
1 ( 1) X q
c_=—|qg—— w=—-——-4+ —
X q q X

The subscriptsc and 1 in the diagram in equation (1) will soon become clear. Rhe
matrix (1) acts in the tensor product of two three-dimensional auxiliary spgatesC® and
it fulfills the Yang—Baxter equation

”

RLE (x/y)RET (RS (v) = RE.L ()RS, ()RS (x/y). 3)

It is easy to check that it also satisfies the Cherdnik’s reflection property [15]

o o
w/x w/x
B
w/y
B
1< w 1 _
Rfi,f (x/y)Rfi‘s () = Rj,,f, () R (x/y) = uly.
y
y Vv
* x
s )

(4)

Here the symbold) indicates that at this point the spectral parameter changes Aréan
w/x andy to u/y. Note the presence of an arbitrary constanin the above equation,
which is related with the choice of the boundaries. As in the case difl€ (n)) invariant
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integrable chain [18], we will take the limji — oo in order to construct a quantum group
invariant model with PBC.

For later convenience the spectral parameter deperiienatrix (1) can be written in
terms of ‘constantR-matrices R.) as

R(x):xR+—iR_=xX—iX (5)

where R, (R_) corresponds to the leading term in the limit of the matRxx) for
x — 00(0).

As usual, the standard monodromy matrix is defined as the produktroétrices (1)
as follows:

&1 & 73
Ty{a}(x) _ RV 51 (1/x)R0[182 (1/x) . Ral‘,l(;[‘(l/x) v T T “e T X o (6)
af{B} - Daapr a2z o B -
1 1 1
B B BL

It acts in the tensor product of A-dimensional ‘quantum space’ and a three-dimensional
auxiliary space 3 x C3). For the casg; = 1, taking the trace of th@-matrix (6)

in the auxiliary space one gets ap/(2,1) invariant transfer matrix, related with the
supersymmetric—J model [22]. However, forg # 1, this trace does not generate an
sply(2, 1) invariant transfer matrix. Then, in order to construct a quantum group invariant
integrable model we have to introduce the ‘doubled’ monodromy méatrix

1 % 3L

n/x
UG qu) = TI0L /o TE W @) = < ()

B B2 BL

whereT is a row-to-row monodromy matrix proportional o :

81 82 .73

N I

1
B B2 B

T @) = RS RE - Ry, (00 = @

Pra Baor BL ar-1

®

1 1

and then take the appropriate trace in the auxiliary space. The arbitrary copstant
(7) can be used to select the boundary conditions. Choagging 1, one obtains the
sply(2,1) invariant supersymmetric—-J/ model with open boundary conditions (OBC),
already discussed in [9, 10]. Other quantum group invariant integrable models, such as
the XXZ model [7, 8], theSU,(N) [11] and SU,(n/m) [12, 13] chains have also been
considered in connection with OBC.

In what follows, we consider the limijz — oo. In this limit the contributions from
T to the monodromy matrix/ and consequently to the transfer matrix (see equation (11))
reduce to a product of constaRtmatrices R) (see equation (5)). We will prove that this
choice yields a quantum group invariant supersymmetrit model with PBC.
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The ‘doubled’ monodromy matri/ (7) can be represented as ax3 matrix whose
entries are matrices acting on the ‘quantum space’

A(x)  Ba(x) Bs(x)
Uy (x) = Co(x) | D3(x) Dix) |- 9)
C3(x) | D3(x) Di(x)
Using equations (3) and (4) (already in the limit— oc) we can prove that it fulfills the
following Yang—Baxter relation:

RLLE 3 /0UL (RS U (3) = USR5 UL ORYS (v/x). (10)
We observe in the above equation the presence of congamatrices {,) instead of
spectral parameter dependetymatrices, which appear in the corresponding relation using
OBC [9, 10]. This will simplify the algebraic nested Bethe ansatz considerably.

Finally, the transfer matrix is defined as the Markov trace associated with the
superalgebrapl, (2, 1) (K) of the ‘doubled’ monodromy matrix in the auxiliary space:

81 & 3L

| —|— o —
) aq so{s
Ty ) = D Kol = x( ()

B B BL
where
K% = o (22 00) ot (12)
and
1 0 O
a:(O 1 o). (13)
0 0 -1

The Yang-Baxter equation for the ‘doubled’ monodromy matix(10) implies that

the transfer matrix (11) commutes for different spectral parameters, which proves the
integrability of the model. Then, from the above defined transfer matrix and the following
properties:

A A
o \5 a/ B B

o o o o

o N
RLEKE = g*s ‘/@ =q I =q" (15)

B B B B

we obtain a quantum group invariant one-dimensional supersymmeifrimodel with PBC
through

H i IN(7)|4—q - (16)
0x
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This yields
H= hj + ho (a7)

where

Z( oCi+lo ~+1,(,c_,-_a) — cosyn; + 2 cosy

X QX njnji1
—2[ S Sa+ 88 + cosy (8757 — )|

+i sin(y)(n; —njy1) —isin(y)(n;Siq — Sinji1) (18)
andhg is a boundary term given by
ho=RyRy - Ry hit R, Ry R{ (19)
—_— —
with
R =1 @1fe R @ 1)  j=12.. L-1 (20)

The presence of this boundary tethy) is essential for the construction of a quantum group
invariant model with PBC. Note that it emerges naturally from the present construction.
The other possible way of obtaining a quantum group invariant Hamiltoni@ga: (0, which
corresponds to OBC), was already discussed in [9, 10]. In equatior’(i88)he humber of
sites of the quantum chain, tmj%t are spin-up or -down annihilation (creation) operators,
the S; are spin matrices and thg are occupation numbers of electrons at lattice gite
The operatorsH, h; and Iéii (i =1,2,...,L —1) act on the ‘quantum spac€&€3" (for
simplicity, we omit the quantum space indices and write them only whenever necessary).

It was shown in [18] using methods of topological quantum field theory that the transfer
matrix obtained by this approach for &, (s/(n)) invariant chain is equivalent to the
partition function of a vertex model on a torus and the periodicity of that model is evident
from this. However, here it is not obvious that the Hamiltonian (17) describes a model
with PBC. To prove this fact we first note that the operat@tsare a representation of the
Hecke algebra [23]

RERF =+(q —1/9RF +1

R¥RY RS = RY RFR, (21)

RfRf:RfRii li—jl>2
From the Hecke algebra conditions (21) and the following relation:

hj=—R +q¢*1 j=12...,L—-1 (22)
we find that the operataf —* mapsh; into i;_;

G'hiG = hj_q j=2...,L-1 (23)
andh into hg

G hiG = Gh; G (24)

1 To obtain relations (21), the Yang—Baxter algebra (3) and equation (20) have been used.



7630 A Foerster

Then, denoting the Hamiltonian of equation (17) B¥i,. . and that obtained by
cyclic permutation(1,2,...,L) — (L,1,2,...,L — 1) by Hp12...-1, and using the
properties (23), (24), we show that

Hitz.1-1=G *Hiz LG (25)

.....

i.e. both Hamiltonians are physically equivalent, which completes the proof that we are
dealing with a periodic chain.

Note that, although the boundary term (19) is apparently non-local, it is local in the
sense that it commutes with the local observables, in particular, the generators of the Hecke
algebra [24]

[ho. Rf]1=0 l<j<L-1 (26)
This can be verified by using equations (21) and (22). Finally, the quantum group
invariance of the Hamiltonian (17) follows directly from the fact that the operafdts

are a representation of the Hecke algebra.
Next we solve the eigenvalue problem of the transfer matrix

= (A +q D5 — ¢ DIV = AW (27)
(and consequently that of the Hamiltonian (17)) through the algebraic nested Bethe ansatz

(ANBA) with two levels. According to the first-level Bethe ansatz, the vedtocan be
written as

3
W= Boy(x1) By (x2) -+ By, (x) W5 @ (28)
{a}=2

The coefficients¥;, are determined later by the second-level Bethe ansatz wihikethe
reference state defined by the equation

Ca®=0 for « =2,3
whose solution isb = ®L _1/1);. It is an eigenstate ofl andDg:
AX)® =gt a(l/x)t® (29)

D5 (x)® = 85b(1/x)" . (30)

Following the general strategy of the algebraic nested Bethe ansatz we apply the transfer
matrix (11) to the eigenvectob (28). Using the following commutation rules derived from
the Yang—Baxter relations (10):

Lat/y) . Le /v,
-A Boz oz - a -A
(0B, 0) =SB0 Aw) = B, 0Aw)
-1 3
~9= Y95 B, opEy) (31)
q
DL By = Ry RO 5y~ Ry SO e (32)
pRBe = s oy B b(y/x)

we commuted and D with all B’s and apply them to the reference stdte All indices in
equations (31) and (32) assume only the valug®. 2Me begin by considering the action

of A on W. Using equation (31), two types of terms arise whérpasses througis, .

In the first A and 3, preserve their arguments, and in the second their arguments are
exchanged. The first kind of terms are called ‘wanted terms’, since they can originate a



Quantum group invariant supersymmetric t—J model 7631

vector proportional tol; this cannot happen to the second type and therefore they are called

the ‘unwanted terms’T). Note that in the present formulation (~ oo) the decomposition

into wanted and unwanted terms appears naturally, as in the usual periodic case (where the

transfer matrix, which is not quantum group invariant, is constructed by taking the trace

of the standard row-to-row monodromy matrix). This is in contrast to the case of OBC

(n = 1), where it is necessary to redefine fleoperators in order to recognize wanted and

unwanted contributions [9, 10]. After successive applications of (31), together with (29),

we obtain

AW = g+t [ 407
i1 bx/xi)

Correspondingly from the commutation relations betw@&eand B, (32) and the action of

D on the reference state (30), we obtain wanted and unwanted contributions:

uT. (33)

r 3
g7 2(D; —DHW =b(1/x)" [ ] D By (xn)Buy(x2) -+ Buy (x)g 5 Wig) + UT.

=1 b(-xi/-x) {a'}=2
(34)
Here we have introduced a new (second-level) transfer matrix
3
Ta) = Z o q UG (35)

a=2
as the Markov trace associated with the superalg&bdl, 1) of the second level ‘doubled’
monodromy matrix{(;,, defined analogously @ (see equation (9)). Now, all indices range
from 2 to 3, as in the internal block of the mati@x (9). Thus, we will treat the internal
block D in the same way as we have done with the whole matrix, through the identification
Aw = U3, By = U3, Cay =Unys andDyy = Upy3, The first term (wanted term) on
the right-hand side of (34) is proportional W if the eigenvalue equation

TV = AoV (36)
is satisfied. The eigenvectdr, of 71, is defined by the second-level Bethe ansatz
Yy = Bay(yo)Bay(y2) - - - Bay(ym) P (37)

where @y is the second level reference state givendy, = ®!_,|2);, as a result of
being annihilated b¥ ;). Then, proceeding along the same lines as in the previous step, we
apply 7(1), equation (35), to the stat&,, equation (37), and pasd., and D, through

the B)’s, using commutation relations derived from the Yang—Baxter relation (10) and the
action of A1y and D¢y on the vacuumdyy. As before, we obtain wanted and unwanted
contributions:

Ap @)W =q"" l_[a(xz/ )l—[ ZEij,) @ +UuT (38)
_ mo—m w(y;/x)
Day(x) Wy = (—1)"q Hb(x /x )]_[ SOz )\11(1)+UT. (39)
J

Then, combining equations (38), (39), (34), (33) and (27) we get the eigenyaltieof
the transfer matrixz if the * unwanted terms’ cancel out:

_ _L—r L . a(x/‘xi) —24+r—m L . a(xi/x) - a(x/yl)
A(x) =q""a(l/x) gib(x/xi) +q b(1/x) Qb(xi/x)jllb(X/yj)
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w(y;/x)
b(yj/x)
All unwanted terms vanish if the Bethe ansatz equations hold. They can be obtained by

demanding that the eigenvalug(x) (40) has no poles at = x; andx = y;, since7 is an
analytic function inx

—(=D"g 7 "b/0)" [ ] (40)
j=1

=-1  k=1..r (41)

T (a(l/x@)L 1—[ a(xi/x;) b(xi/xy) 1—[ b(xi/y;)

b(A/x)) 14 bCu/x) a(xi/x) 13 ala/y)

(—1)"g" 1—[ a(x;/yr) a(yi/y;) b(y;/y) —1 =1, .. .m. (42)

i1 DGi/y0 53 bOu/yp) w(yj/yn) B

Therefore, we have reduced the eigenvalue problem of the transfer rifatoxa system

of coupled algebraic equations in the parametermnd y. Note that these equations are
much simpler than those obtained for OBC (see [9, 10]). A possible application of these
results (equations (41), (42)) would be an analysis of the structure of the ground state
and some low lying excitations of the model in the thermodynamic limit. The question
of the completeness of the Bethe states forsaf (2, 1) invariant supersymmetric—J/

model is left open. In [22], this point was treated for the isotropic cgse (1), where a
complete set of eigenvectors was obtained by combining the Bethe ansatz with (Biel)
underlying supersymmetry of the model. The completeness af-dteformed version is
under investigation.

Acknowledgments

The author would like to thank M Karowski for useful discussions and CNPq (Conselho
Nacional de Desenvolvimento Ciéfito e Tecnobgico) for financial support.

References

[1] Bethe H 1931Z. Phys.71 205

[2] Yang C N and Yang C P 196Bhys. Rev150327; 1969J. Math. Phys10 1115

[3] Baxter R J 1982Exactly Solved Models in Statistical Mechanidéew York: Academic)

[4] De Vega H J 1989nt. J. Mod. PhysA 4 2371

[5] Reshetikhin N Yu, TakhtajaL A and Faddee L D 1989 Algebra Analysisl 178

Takhtajan L A and Faddee L D 1979 Russian Math. Survey34 11
[6] Jimbo M 1985Lett. Math. Phys10 1063
Drinfeld V G 1986Sov. Math. Dokl32 254
[7] Mezincescu L and NepomeehR | 1991Mod. Phys. Lett6A 2497; 1991int. J. Mod. PhysA 6 5231; 1994
J. Phys. A: Math. Gern24 L17

[8] Destri C and De Veg H J 1992Nucl. Phys.B 385 361; 1992Nucl. Phys.B 374 692

[9] Foerster A and Karowski M 199Blucl. PhysB 408512
[10] Gonzlez-Ruiz A 1994Nucl. Phys.B 424 468
[11] Gonzlez-Ruiz A and De Ve H J 1994Nucl. Phys.B 417 553; 1994Phys. Lett332B 123
[12] Martin P P and Rittenberg V 1992t. J. Mod. PhysA 7 Suppl. 1B 707
[13] Yue R, Fan H and Hou B 1998ucl. Phys.B 462 167
[14] Artz S, Mezincescu L and NepomeehR | 1995Int. J. Mod. PhysA 10 1937; 1995]. Phys. A: Math. Gen.

285131

[15] Cherednik | 1984Theor. Mat. Fiz.61 35
[16] Sklyanin E K, 1988]. Phys. A: Math. Gen21 2375
[17] Martin P P 1991Potts Models and Related Problems in Statistical Mecha(fgisgapore: World Scientific)
[18] Karowski M and Zapletal A 1994ucl. PhysB 419567; 1994J. Phys. A: Math. GerR7 7419



Quantum group invariant supersymmetric t—J model 7633

[19] Grosse H, Pallua S, Prester P and Raschhofer E 1984ys. A: Math. Gern27 4761

[20] Kulish P P and Sklyanin E K, 1982 Sov. Mathl9 1596

[21] Bracken A J, God M D and Zhag R B 1990Mod. Phys. Lett5A 831

[22] Foerster A and Karowski M 199Rhys. RevB 46 9234; 1993Nucl. Phys.B 396 611

[23] Degucchi T and Akutsu Y 1990. Phys. A: Math. Ger23 1861; 1989J. Phys. Soc. Japah8 3441
[24] Karowski M 1996 private communication



